The central screen shows the speed in miles per hour and Mach number (Mach 1 being the speed of sound), calculated by GPS, plus jet engine and rocket outputs. Dynamic speed indicators help Andy to judge when to fire the rocket and deploy the braking systems. Wheel loads are also given prominence. BLOODHOUND does not use aerodynamic downforce, as a Formula 1 car does, while lift at the nose or rear axle must also be avoided at all costs. The need to carefully balance forces throughout its 1000mph speed range is one of the major reasons why shaping the Car has taken 30 design-years.
The left-hand screen shows hydraulic pressures and temperatures in the braking and airbrake systems, while the one to Andy’s right provides information about the three engines, including temperatures, pressures and fuel levels. Together, the EJ200 jet engine and Nammo hybrid rockets produce around 210 kN (21 tonnes) of thrust, equivalent to 135,000 thrust hp, or 180 F1 cars, and Andy will monitor their status at key points during each run.
BLOODHOUND’s dash also features two precision-engineered analogue Rolex instruments: a chronograph with built-in stopwatch, and a speedometer graduated up to 1,100mph (1,770km/h). The speedometer is a vital back-up to allow the Car to be stopped safely should the digital dashboard fail, while the chronograph will help to time the start-up and cool-down of the jet, and help to monitor the performance of other systems. Tested to withstand the severe vibration at 1,000 mph and the desert heat, these bespoke Rolex instruments are unique to BLOODHOUND SSC.
Andy enters his office via a carbon fibre hatch, 500mm in diameter, just below the jet air intake. At full power, the EJ200 fan sucks in 65 m3 of air per second, so the hatch will be fastened using latches able to withstand loads of 2.5kN (quarter of a tonne) to prevent it from getting ingested into the engine.
The instrument panels have been coated with a special non-reflective grey paint to provide the optimum background colour against which to see the gauges and controls, while the cockpit walls are white to maximise the available light in the cockpit. The Car also has interior lights, as BLOODHOUND SSC will often be prepared before dawn, when the desert will still be dark and temperatures around freezing. During the day ambient temperatures will approach 40ºC (104ºF) though BLOODHOUND SSC will most likely not run in conditions above 25ºC (77ºF) as the metallic sections of the Car will get too hot for the team to handle and the jet engine is inefficient when burning hot, less dense air. Cockpit temperature is still expected to approach exceed 35ºC (95ºF), so external air conditioning will be used to cool it prior to each run, though this is primarily for the comfort of the electronics, not the driver.
Andy will keep BLOODHOUND SSC on course using a bespoke 3D printed titanium steering wheel, shaped to his hands and finger reach. Buttons on the front control the EMCOM radio, airbrakes and parachutes, while triggers on the rear of the handgrips prime and fire the rockets. BLOODHOUND engineers developed several design evolutions of the wheel, the last of which was finalised for manufacture by Cambridge Design Partnership. BLOODHOUND has a conventional steering rack with a 30:1 ratio (compared to a normal car of around 15:1) though its long wheelbase makes for a very large turning circle: 240 metres, compared with 10 metres for a typical family hatchback.
BLOODHOUND SSC has pedals like a regular car, though once again, they are custom designed for Andy. The right-hand pedal throttles the EJ200 jet engine and will be used to start the Car moving. The left pedal controls the wheel brakes and will be used to slow the Car at speeds below 200mph (321km/h). The wheel brakes will only contribute about one percent of the total braking effort, reducing the stopping distance by around half a mile. Braking speed is critical, as using the wheel brakes above 200mph (321km/h) will exceed their energy capacity and set fire to them.
During a 1000mph (1,609km/h) run, BLOODHOUND SSC will cover 12miles (19.3km) in 2 minutes, exerting an acceleration force of almost 2G and peak deceleration force of 3G on Andy. This long-duration G force is another experience unique to BLOODHOUND: an F1 driver may experience higher G forces, but they only do so for a few seconds at a time. Andy will be sat in a carbon fibre seat, moulded to his body shape by Real Equip, and manufactured by URT Group. This seat installation will provide unparalleled levels of support and safety for the driver, who will be angled back and strapped in using a Willans five point harness. Andy will also wear a Pro Ultra HANS device, to protect his neck from sudden, violent movements or decelerations, and an Arai helmet.
The cockpit also carries a Camlock air supply, feeding clean breathing air to Andy through the ‘Adom’ mask used by RAF Typhoon pilots. This full-face race spec helmet, mated to a jet fighter-style breathing system, is again unique to BLOODHOUND and combines the best driver protection features from both motorsport and aerospace. A Willans fire suppression system has also been specified, which will douse the cockpit in foam should built-in infrared sensors detect naked flames.
Driver safety has been the prime design and engineering objective throughout BLOODHOUND’s gestation and the team has worked closely with motor racing’s governing world body, the Fédération Internationale de L’Automobile (FIA) to create the best safety cell in the history of motor sport.
The cockpit is also a showcase for the extraordinary skills of UK manufacturing. The BLOODHOUND Project is grateful for the support of a raft world-class companies who share our ambition to inspire a generation to follow science and engineering by building, and racing, the most extraordinary Car in the world. |
I saw the full size mock up at Santa Pod recently and it is bloody amazing . This machine is an invention , safe ride Andy .
The concept of driver safety in this thing is great and all but I can’t imagine a 900 MPH crash resulting in anything but swift death.
Open the pod-bay doors, HAL!
As I’ve said recently, boasting about a mock-up of a car that won’t be turning a wheel until 2015 at the earliest is just so much hot air. This lot have bottled out twice before and still trot out the same underwhelming story. I therefore appeal to any REAL speed freaks out there – design, build and run a rocket car to 1,000mph before 2016 and show these clowns up. Bloodhound’s jet engine apparently will only take it to above 200mph, when the rocket kicks in – a big block could have done that and lost that great gaping maw of an air intake which must act like a giant parachute. State of the art computer simulations are all very well, but you could build a contender for this lot’s IT budget!
I wouldn’t be surprised if their sponsors get impatient and begin to pull out – I especially if they delay by another year.
Bloodhound – the fastest bullshit powered car in history!